Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
FIRST2(X1, mark1(X2)) -> FIRST2(X1, X2)
RECIP1(mark1(X)) -> RECIP1(X)
ACTIVE1(recip1(X)) -> RECIP1(active1(X))
S1(mark1(X)) -> S1(X)
FIRST2(mark1(X1), X2) -> FIRST2(X1, X2)
RECIP1(ok1(X)) -> RECIP1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X2)
PROPER1(half1(X)) -> PROPER1(X)
ACTIVE1(dbl1(s1(X))) -> DBL1(X)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(terms1(X)) -> ACTIVE1(X)
ACTIVE1(terms1(N)) -> SQR1(N)
ACTIVE1(first2(X1, X2)) -> FIRST2(active1(X1), X2)
TOP1(mark1(X)) -> TOP1(proper1(X))
PROPER1(sqr1(X)) -> PROPER1(X)
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
ACTIVE1(add2(X1, X2)) -> ADD2(active1(X1), X2)
SQR1(mark1(X)) -> SQR1(X)
TOP1(ok1(X)) -> ACTIVE1(X)
ACTIVE1(terms1(N)) -> CONS2(recip1(sqr1(N)), terms1(s1(N)))
PROPER1(sqr1(X)) -> SQR1(proper1(X))
ACTIVE1(half1(s1(s1(X)))) -> S1(half1(X))
ACTIVE1(s1(X)) -> S1(active1(X))
PROPER1(s1(X)) -> PROPER1(X)
ACTIVE1(add2(X1, X2)) -> ADD2(X1, active1(X2))
PROPER1(recip1(X)) -> RECIP1(proper1(X))
ACTIVE1(add2(s1(X), Y)) -> ADD2(X, Y)
ACTIVE1(sqr1(s1(X))) -> ADD2(sqr1(X), dbl1(X))
ACTIVE1(terms1(N)) -> RECIP1(sqr1(N))
ACTIVE1(first2(s1(X), cons2(Y, Z))) -> FIRST2(X, Z)
TOP1(mark1(X)) -> PROPER1(X)
ADD2(mark1(X1), X2) -> ADD2(X1, X2)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
PROPER1(terms1(X)) -> PROPER1(X)
DBL1(ok1(X)) -> DBL1(X)
PROPER1(half1(X)) -> HALF1(proper1(X))
PROPER1(first2(X1, X2)) -> PROPER1(X1)
HALF1(mark1(X)) -> HALF1(X)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
ACTIVE1(sqr1(s1(X))) -> DBL1(X)
ACTIVE1(first2(X1, X2)) -> FIRST2(X1, active1(X2))
ACTIVE1(dbl1(X)) -> DBL1(active1(X))
PROPER1(add2(X1, X2)) -> PROPER1(X1)
PROPER1(add2(X1, X2)) -> ADD2(proper1(X1), proper1(X2))
PROPER1(s1(X)) -> S1(proper1(X))
S1(ok1(X)) -> S1(X)
ACTIVE1(first2(s1(X), cons2(Y, Z))) -> CONS2(Y, first2(X, Z))
ACTIVE1(s1(X)) -> ACTIVE1(X)
PROPER1(recip1(X)) -> PROPER1(X)
ACTIVE1(half1(X)) -> ACTIVE1(X)
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
ACTIVE1(cons2(X1, X2)) -> CONS2(active1(X1), X2)
ADD2(ok1(X1), ok1(X2)) -> ADD2(X1, X2)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(half1(s1(s1(X)))) -> HALF1(X)
ACTIVE1(sqr1(s1(X))) -> S1(add2(sqr1(X), dbl1(X)))
TERMS1(ok1(X)) -> TERMS1(X)
ACTIVE1(terms1(X)) -> TERMS1(active1(X))
ACTIVE1(sqr1(X)) -> SQR1(active1(X))
ACTIVE1(terms1(N)) -> TERMS1(s1(N))
DBL1(mark1(X)) -> DBL1(X)
PROPER1(first2(X1, X2)) -> FIRST2(proper1(X1), proper1(X2))
ACTIVE1(dbl1(s1(X))) -> S1(dbl1(X))
PROPER1(add2(X1, X2)) -> PROPER1(X2)
ACTIVE1(half1(X)) -> HALF1(active1(X))
ACTIVE1(sqr1(s1(X))) -> SQR1(X)
FIRST2(ok1(X1), ok1(X2)) -> FIRST2(X1, X2)
ADD2(X1, mark1(X2)) -> ADD2(X1, X2)
PROPER1(dbl1(X)) -> DBL1(proper1(X))
PROPER1(cons2(X1, X2)) -> CONS2(proper1(X1), proper1(X2))
SQR1(ok1(X)) -> SQR1(X)
PROPER1(terms1(X)) -> TERMS1(proper1(X))
TERMS1(mark1(X)) -> TERMS1(X)
TOP1(ok1(X)) -> TOP1(active1(X))
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
ACTIVE1(terms1(N)) -> S1(N)
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
ACTIVE1(dbl1(s1(X))) -> S1(s1(dbl1(X)))
HALF1(ok1(X)) -> HALF1(X)
PROPER1(dbl1(X)) -> PROPER1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
ACTIVE1(add2(s1(X), Y)) -> S1(add2(X, Y))
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
FIRST2(X1, mark1(X2)) -> FIRST2(X1, X2)
RECIP1(mark1(X)) -> RECIP1(X)
ACTIVE1(recip1(X)) -> RECIP1(active1(X))
S1(mark1(X)) -> S1(X)
FIRST2(mark1(X1), X2) -> FIRST2(X1, X2)
RECIP1(ok1(X)) -> RECIP1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X2)
PROPER1(half1(X)) -> PROPER1(X)
ACTIVE1(dbl1(s1(X))) -> DBL1(X)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(terms1(X)) -> ACTIVE1(X)
ACTIVE1(terms1(N)) -> SQR1(N)
ACTIVE1(first2(X1, X2)) -> FIRST2(active1(X1), X2)
TOP1(mark1(X)) -> TOP1(proper1(X))
PROPER1(sqr1(X)) -> PROPER1(X)
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
ACTIVE1(add2(X1, X2)) -> ADD2(active1(X1), X2)
SQR1(mark1(X)) -> SQR1(X)
TOP1(ok1(X)) -> ACTIVE1(X)
ACTIVE1(terms1(N)) -> CONS2(recip1(sqr1(N)), terms1(s1(N)))
PROPER1(sqr1(X)) -> SQR1(proper1(X))
ACTIVE1(half1(s1(s1(X)))) -> S1(half1(X))
ACTIVE1(s1(X)) -> S1(active1(X))
PROPER1(s1(X)) -> PROPER1(X)
ACTIVE1(add2(X1, X2)) -> ADD2(X1, active1(X2))
PROPER1(recip1(X)) -> RECIP1(proper1(X))
ACTIVE1(add2(s1(X), Y)) -> ADD2(X, Y)
ACTIVE1(sqr1(s1(X))) -> ADD2(sqr1(X), dbl1(X))
ACTIVE1(terms1(N)) -> RECIP1(sqr1(N))
ACTIVE1(first2(s1(X), cons2(Y, Z))) -> FIRST2(X, Z)
TOP1(mark1(X)) -> PROPER1(X)
ADD2(mark1(X1), X2) -> ADD2(X1, X2)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
PROPER1(terms1(X)) -> PROPER1(X)
DBL1(ok1(X)) -> DBL1(X)
PROPER1(half1(X)) -> HALF1(proper1(X))
PROPER1(first2(X1, X2)) -> PROPER1(X1)
HALF1(mark1(X)) -> HALF1(X)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
ACTIVE1(sqr1(s1(X))) -> DBL1(X)
ACTIVE1(first2(X1, X2)) -> FIRST2(X1, active1(X2))
ACTIVE1(dbl1(X)) -> DBL1(active1(X))
PROPER1(add2(X1, X2)) -> PROPER1(X1)
PROPER1(add2(X1, X2)) -> ADD2(proper1(X1), proper1(X2))
PROPER1(s1(X)) -> S1(proper1(X))
S1(ok1(X)) -> S1(X)
ACTIVE1(first2(s1(X), cons2(Y, Z))) -> CONS2(Y, first2(X, Z))
ACTIVE1(s1(X)) -> ACTIVE1(X)
PROPER1(recip1(X)) -> PROPER1(X)
ACTIVE1(half1(X)) -> ACTIVE1(X)
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
ACTIVE1(cons2(X1, X2)) -> CONS2(active1(X1), X2)
ADD2(ok1(X1), ok1(X2)) -> ADD2(X1, X2)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(half1(s1(s1(X)))) -> HALF1(X)
ACTIVE1(sqr1(s1(X))) -> S1(add2(sqr1(X), dbl1(X)))
TERMS1(ok1(X)) -> TERMS1(X)
ACTIVE1(terms1(X)) -> TERMS1(active1(X))
ACTIVE1(sqr1(X)) -> SQR1(active1(X))
ACTIVE1(terms1(N)) -> TERMS1(s1(N))
DBL1(mark1(X)) -> DBL1(X)
PROPER1(first2(X1, X2)) -> FIRST2(proper1(X1), proper1(X2))
ACTIVE1(dbl1(s1(X))) -> S1(dbl1(X))
PROPER1(add2(X1, X2)) -> PROPER1(X2)
ACTIVE1(half1(X)) -> HALF1(active1(X))
ACTIVE1(sqr1(s1(X))) -> SQR1(X)
FIRST2(ok1(X1), ok1(X2)) -> FIRST2(X1, X2)
ADD2(X1, mark1(X2)) -> ADD2(X1, X2)
PROPER1(dbl1(X)) -> DBL1(proper1(X))
PROPER1(cons2(X1, X2)) -> CONS2(proper1(X1), proper1(X2))
SQR1(ok1(X)) -> SQR1(X)
PROPER1(terms1(X)) -> TERMS1(proper1(X))
TERMS1(mark1(X)) -> TERMS1(X)
TOP1(ok1(X)) -> TOP1(active1(X))
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
ACTIVE1(terms1(N)) -> S1(N)
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
ACTIVE1(dbl1(s1(X))) -> S1(s1(dbl1(X)))
HALF1(ok1(X)) -> HALF1(X)
PROPER1(dbl1(X)) -> PROPER1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
ACTIVE1(add2(s1(X), Y)) -> S1(add2(X, Y))
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 12 SCCs with 40 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
HALF1(mark1(X)) -> HALF1(X)
HALF1(ok1(X)) -> HALF1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
HALF1(ok1(X)) -> HALF1(X)
Used argument filtering: HALF1(x1) = x1
mark1(x1) = x1
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
HALF1(mark1(X)) -> HALF1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
HALF1(mark1(X)) -> HALF1(X)
Used argument filtering: HALF1(x1) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
FIRST2(X1, mark1(X2)) -> FIRST2(X1, X2)
FIRST2(ok1(X1), ok1(X2)) -> FIRST2(X1, X2)
FIRST2(mark1(X1), X2) -> FIRST2(X1, X2)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
FIRST2(ok1(X1), ok1(X2)) -> FIRST2(X1, X2)
Used argument filtering: FIRST2(x1, x2) = x2
mark1(x1) = x1
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
FIRST2(X1, mark1(X2)) -> FIRST2(X1, X2)
FIRST2(mark1(X1), X2) -> FIRST2(X1, X2)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
FIRST2(X1, mark1(X2)) -> FIRST2(X1, X2)
Used argument filtering: FIRST2(x1, x2) = x2
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
FIRST2(mark1(X1), X2) -> FIRST2(X1, X2)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
FIRST2(mark1(X1), X2) -> FIRST2(X1, X2)
Used argument filtering: FIRST2(x1, x2) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
DBL1(mark1(X)) -> DBL1(X)
DBL1(ok1(X)) -> DBL1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
DBL1(ok1(X)) -> DBL1(X)
Used argument filtering: DBL1(x1) = x1
mark1(x1) = x1
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
DBL1(mark1(X)) -> DBL1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
DBL1(mark1(X)) -> DBL1(X)
Used argument filtering: DBL1(x1) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ADD2(X1, mark1(X2)) -> ADD2(X1, X2)
ADD2(mark1(X1), X2) -> ADD2(X1, X2)
ADD2(ok1(X1), ok1(X2)) -> ADD2(X1, X2)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ADD2(ok1(X1), ok1(X2)) -> ADD2(X1, X2)
Used argument filtering: ADD2(x1, x2) = x2
mark1(x1) = x1
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ADD2(X1, mark1(X2)) -> ADD2(X1, X2)
ADD2(mark1(X1), X2) -> ADD2(X1, X2)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ADD2(X1, mark1(X2)) -> ADD2(X1, X2)
Used argument filtering: ADD2(x1, x2) = x2
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ADD2(mark1(X1), X2) -> ADD2(X1, X2)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ADD2(mark1(X1), X2) -> ADD2(X1, X2)
Used argument filtering: ADD2(x1, x2) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
S1(ok1(X)) -> S1(X)
S1(mark1(X)) -> S1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
S1(mark1(X)) -> S1(X)
Used argument filtering: S1(x1) = x1
ok1(x1) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
S1(ok1(X)) -> S1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
S1(ok1(X)) -> S1(X)
Used argument filtering: S1(x1) = x1
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
SQR1(ok1(X)) -> SQR1(X)
SQR1(mark1(X)) -> SQR1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
SQR1(mark1(X)) -> SQR1(X)
Used argument filtering: SQR1(x1) = x1
ok1(x1) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
SQR1(ok1(X)) -> SQR1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
SQR1(ok1(X)) -> SQR1(X)
Used argument filtering: SQR1(x1) = x1
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
RECIP1(mark1(X)) -> RECIP1(X)
RECIP1(ok1(X)) -> RECIP1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
RECIP1(ok1(X)) -> RECIP1(X)
Used argument filtering: RECIP1(x1) = x1
mark1(x1) = x1
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
RECIP1(mark1(X)) -> RECIP1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
RECIP1(mark1(X)) -> RECIP1(X)
Used argument filtering: RECIP1(x1) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
Used argument filtering: CONS2(x1, x2) = x2
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
Used argument filtering: CONS2(x1, x2) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
TERMS1(mark1(X)) -> TERMS1(X)
TERMS1(ok1(X)) -> TERMS1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
TERMS1(ok1(X)) -> TERMS1(X)
Used argument filtering: TERMS1(x1) = x1
mark1(x1) = x1
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
TERMS1(mark1(X)) -> TERMS1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
TERMS1(mark1(X)) -> TERMS1(X)
Used argument filtering: TERMS1(x1) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(half1(X)) -> PROPER1(X)
PROPER1(recip1(X)) -> PROPER1(X)
PROPER1(add2(X1, X2)) -> PROPER1(X1)
PROPER1(s1(X)) -> PROPER1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
PROPER1(terms1(X)) -> PROPER1(X)
PROPER1(first2(X1, X2)) -> PROPER1(X1)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
PROPER1(dbl1(X)) -> PROPER1(X)
PROPER1(add2(X1, X2)) -> PROPER1(X2)
PROPER1(sqr1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(add2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
PROPER1(first2(X1, X2)) -> PROPER1(X1)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
PROPER1(add2(X1, X2)) -> PROPER1(X2)
Used argument filtering: PROPER1(x1) = x1
half1(x1) = x1
recip1(x1) = x1
add2(x1, x2) = add2(x1, x2)
s1(x1) = x1
cons2(x1, x2) = cons2(x1, x2)
terms1(x1) = x1
first2(x1, x2) = first2(x1, x2)
dbl1(x1) = x1
sqr1(x1) = x1
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(half1(X)) -> PROPER1(X)
PROPER1(recip1(X)) -> PROPER1(X)
PROPER1(s1(X)) -> PROPER1(X)
PROPER1(terms1(X)) -> PROPER1(X)
PROPER1(sqr1(X)) -> PROPER1(X)
PROPER1(dbl1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(dbl1(X)) -> PROPER1(X)
Used argument filtering: PROPER1(x1) = x1
half1(x1) = x1
recip1(x1) = x1
s1(x1) = x1
terms1(x1) = x1
sqr1(x1) = x1
dbl1(x1) = dbl1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(half1(X)) -> PROPER1(X)
PROPER1(recip1(X)) -> PROPER1(X)
PROPER1(s1(X)) -> PROPER1(X)
PROPER1(terms1(X)) -> PROPER1(X)
PROPER1(sqr1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(sqr1(X)) -> PROPER1(X)
Used argument filtering: PROPER1(x1) = x1
half1(x1) = x1
recip1(x1) = x1
s1(x1) = x1
terms1(x1) = x1
sqr1(x1) = sqr1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(half1(X)) -> PROPER1(X)
PROPER1(recip1(X)) -> PROPER1(X)
PROPER1(s1(X)) -> PROPER1(X)
PROPER1(terms1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(terms1(X)) -> PROPER1(X)
Used argument filtering: PROPER1(x1) = x1
half1(x1) = x1
recip1(x1) = x1
s1(x1) = x1
terms1(x1) = terms1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(half1(X)) -> PROPER1(X)
PROPER1(recip1(X)) -> PROPER1(X)
PROPER1(s1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(s1(X)) -> PROPER1(X)
Used argument filtering: PROPER1(x1) = x1
half1(x1) = x1
recip1(x1) = x1
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(half1(X)) -> PROPER1(X)
PROPER1(recip1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(recip1(X)) -> PROPER1(X)
Used argument filtering: PROPER1(x1) = x1
half1(x1) = x1
recip1(x1) = recip1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(half1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(half1(X)) -> PROPER1(X)
Used argument filtering: PROPER1(x1) = x1
half1(x1) = half1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(terms1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X2)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X2)
Used argument filtering: ACTIVE1(x1) = x1
half1(x1) = x1
dbl1(x1) = x1
first2(x1, x2) = first2(x1, x2)
cons2(x1, x2) = x1
terms1(x1) = x1
add2(x1, x2) = add2(x1, x2)
sqr1(x1) = x1
s1(x1) = x1
recip1(x1) = x1
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(terms1(X)) -> ACTIVE1(X)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(recip1(X)) -> ACTIVE1(X)
Used argument filtering: ACTIVE1(x1) = x1
half1(x1) = x1
dbl1(x1) = x1
cons2(x1, x2) = x1
terms1(x1) = x1
sqr1(x1) = x1
s1(x1) = x1
recip1(x1) = recip1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(terms1(X)) -> ACTIVE1(X)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(s1(X)) -> ACTIVE1(X)
Used argument filtering: ACTIVE1(x1) = x1
half1(x1) = x1
dbl1(x1) = x1
cons2(x1, x2) = x1
terms1(x1) = x1
sqr1(x1) = x1
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(terms1(X)) -> ACTIVE1(X)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
Used argument filtering: ACTIVE1(x1) = x1
half1(x1) = x1
dbl1(x1) = x1
cons2(x1, x2) = x1
terms1(x1) = x1
sqr1(x1) = sqr1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(terms1(X)) -> ACTIVE1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(terms1(X)) -> ACTIVE1(X)
Used argument filtering: ACTIVE1(x1) = x1
half1(x1) = x1
dbl1(x1) = x1
cons2(x1, x2) = x1
terms1(x1) = terms1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
Used argument filtering: ACTIVE1(x1) = x1
half1(x1) = x1
dbl1(x1) = x1
cons2(x1, x2) = cons1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
Used argument filtering: ACTIVE1(x1) = x1
half1(x1) = x1
dbl1(x1) = dbl1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(half1(X)) -> ACTIVE1(X)
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(half1(X)) -> ACTIVE1(X)
Used argument filtering: ACTIVE1(x1) = x1
half1(x1) = half1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
TOP1(ok1(X)) -> TOP1(active1(X))
TOP1(mark1(X)) -> TOP1(proper1(X))
The TRS R consists of the following rules:
active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.